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It is suggested that the nucleon mass arises largely as a self-energy of some primary fermion field through
the same mechanism as the appearance of energy gap in the theory of superconductivity. The idea can be put
into a mathematical formulation utilizing a generalized Hartree-Fock approximation which regards real
nucleons as quasi-particle excitations. We consider a simplified model of nonlinear four-fermion interaction
which allows a p5-gauge group. An interesting consequence of the symmetry is that there arise automatically
pseudoscalar zero-mass bound states of nucleon-antinucleon pair which may be regarded as an idealized pion.
In addition, massive bound states of nucleon number zero and two are predicted in a simple approximation.

The theory contains two parameters which can be explicitly related to observed nucleon mass and the
pion-nucleon coupling constant. Some paradoxical aspects of the theory in connection with the p5 trans-
formation are discussed in detail.

I. INTRODUCTION

" 'N this paper we are going to develop a dynamical
- theory of elementary particles in which nucleons and

mesons are derived in a unified way from a fundamental
spinor field. In basic physical ideas, it has thus the
characteristic features of a compound-particle model,
but unlike most of the existing theories, dynamical
treatment of the interaction makes up an essential part
of the theory. Strange particles are not yet considered.

The scheme is motivated by the observation of an
interesting analogy between the properties of Dirac
particles and the quasi-particle excitations that appear
in the theory of superconductivity, which was originated
with great success by Bardeen, Cooper, and Schrieffer, '
and subsequently given an elegant mathematical forlnu-
lation by Bogoliubov. ' The characteristic feature of the
BCS theory is that it produces an energy gap between
the ground state and the excited states of a supercon-
ductor, a fact w'hich has been confirmed experimentally.
The gap is caused due to the fact that the attractive
phonon-mediated interaction between electrons produces
correlated pairs of electrons with opposite momenta and
spin near the Fermi surface, and it takes a finite amount
of energy to break this correlation.

Elementary excitations in a superconductor can be
conveniently described by means of a coherent mixture
of electrons and holes, which obeys the following
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equations' 4:

E4~= e lto~+40 (1.1
E0 ~*= eA ~*—+44~,

near the Fermi surface. 11„+ is the component of the
excitation corresponding to an electron state of mo-
mentum P and spin +(up), andri ~*corresponding to
a hole state of momentum p and spin +, which means
an absence of an electron of momentum —p and spin
—(down). eo is the kinetic energy measured from the
Fermi surface; g is a constant. There will also be an
equation complex conjugate to Eq. (1), describing
another type of excitation.

Equation (1) gives the eigenvalues

E„=a (e,'+y')-*'. (1.2)

The two states of this quasi-particle are separated in

energy by 2
~
E„~.In the ground state of the system all

the quasi-particles should be in the lower (negative)
energy states of Eq. (2), and it would take a finite

energy 2)E„~ )~2~&~ to excite a particle to the upper
state. The situation bears a remarkable resemblance to
the case of a Dirac particle. The four-component Dirac
equation can be split into two sets to read

EP,=o"Pter+ res,
Egs ———o"Pigs+ nell r,

E„=W (p'+nt') l,

where tPt and Ps are the two eigenstates of the chirality
operator ys ——y jy2y3y4.

According to Dirac's original interpretation, the
ground state (vacuum) of the world has all the electrons
in the negative energy states, and to create excited
states (with zero particle number) we have to supply an

energy &~2m.
In the BCS-Bogoliubov theory, the gap parameter @,

which is absent for free electrons, is determined es-

sentially as a self-consistent (Hartree-Fock) representa-
tion of the electron-electron interaction eGect.

4 J. G. Valatin, Nuovo cimento 7, 843 (1958).
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One finds that
y=(o expL —1/p$, (1.4)

where co is the energy bandwidth (= the Debye fre-

quency) around the Fermi surface within which the
interaction is important; p is the average interaction
energy of an electron interacting with unit energy shell
of electrons on the Fermi surface. It is significant that g
depends on the strength of the interaction (coupling
constant) in a nonanalytic way.

We would like to pursue this analogy mathematically.
As the energy gap P in a superconduct:or is created by
the interaction, let us assume that the mass of a Dirac
particle is also due to some interaction between massless
bare fermions. A quasi-particle in a superconductor is a
mixture of bare electrons with opposite electric charges

(a particle and a hole) but with the same spin; corre-
spondingly a massive Dirac particle is a mixture of bare
fermions with opposite chiralities, but with the same
charge or fermion number. Without the gap p or the
mass ns, the respective particle would become an eigen-
state of electric charge or chirality.

Once we make this analogy, we immediately notice
further consequences of special interest. It has been
pointed out by several people' ' ' that in a refined

theory of superconductivity there emerge, in addition
to the individual quasi-particle excitations, collective
excitations of quasi-particle pairs. (These can alter-
natively be interpreted as moving states of bare electron
pairs which are originally precipitated into the ground
state of the system. ) In the absence of Coulomb inter-
action, these excitations are phonon-like, filling the gap
of the quasi-particle spectrum.

In general, they are excited when a quasi-particle is
accelerated in the medium, and play the role of a back-
Qow around the particle, compensating the change of
charge localized on the quasi-particle wave packet.
Thus these excitatioDs are necessary consequences of the
fact that individual quasi-particles are not eigenstates
of electric charge, and hence their equations are not
gauge invariant; whereas a complete description of the
system must be gauge invariant. The logical connection
between gauge invariance and the existence of collective
states has been particularly emphasized by one of the
authors. '

This observation leads to the conclusion that if a
Dirac particle is actually a quasi-particle, which is only
an approximate description of an entire system where
chirality is conserved, then there must also exist col-
lective excitations of bound quasi-particle pairs. The
chirality conservation implies the invariance of the
theory under the so-called ps gauge group, and from its
nature one can show that the collective state must be a
pseudoscalar quantity.

~ D. Pines and J. R. Schrieffer, Nuovo cimento 10, 496 (1958).' P. W. Anderson, Phys. Rev. 110, 827, 1900 (1958); 114, 1002
(1959).

~ G. Rickayzen, Phys. Rev. 115, 795 (1959).
Y. NaInbu, Phys. Rev. 11?,648 (1960).

It is perhaps not a coincidence that there exists such
an entity in the form of the pion. For this reason, we
would like to regard our theory as dealing with nucleons
and mesons. The implication would be that the nucleon
mass is a manifestation of some unknown primary inter-
action between originally massless fermions, the same
interaction also being responsible for the binding of
nucleon pairs into pions.

An additional support of the idea can be found in the
weak decay processes of nucleons and pions which indi-
cate that the p5 invariance is at least approximately
conserved, as will be discussed in Part II. There are
some difficulties, however, that naturally arise on fur-
ther examination.

Comparison between a relativistic theory and a non-
relativistic, intuitive picture is often dangerous, because
the former is severely restricted by the requirement of
relativistic invariance. In our case, the energy-gap
equation (4) depends on the energy density on the Fermi
surface; for zero Fermi radius, the gap vanishes. The
Fermi sphere, however, is not a relativistically invariant
object, so that in the theory of nucleons it is not clear
whether a formula like Eq. (4) could be obtained for the
mass. This is not surprising, since there is a well known
counterpart in classical electron theory that a finite
electron radius is incompatible with relativistic in-
variance.

We avoid this difficulty by simply introducing a
relativistic cutoff which takes the place of the Fermi
sphere. Our framework does not yet resolve the diver-
gence difficulty of self-energy, and the origin of such an
effective cuto8 has to be left as an open question.

The second difficulty concerns the mass of the pion. If
pion is to be identified with the phonon-like excitations
associated with a gauge group, its mass must necessarily
be zero. It is true that in real superconductors the col-
lective charge fluctuation is screened by Coulomb inter-
action to turn into the plasma mode, which has a finite
"rest mass. "A similar mechanism may be operating in
the meson case too. It is possible, however, that the
finite meson mass means that chirality conservation is
only approximate in a real theory. From the evidence
in weak interactions, we are inclined toward the second
view.

The observation made so far does not yet give us a
clue as to the exact mechanism of the primary inter-
action. Neither do we have a fundamental understand-
ing of the isospin and strangeness quantum numbers,
although it is easy to incorporate at least the isospin
degree of freedom into the theory from the beginning.
The best we can do here is to examine the various ex-
isting models for their logical simplicity and experi-
mental support, if any. We will do this in Sec. 2, and
settle for the moment on a nonlinear four-fermion
interaction of the Heisenberg type. For reasons of
simplicity in presentation, we adopt a model without
isospin and strangeness degrees of freedom, and pos-
sessing complete ys invariance. Once the choice is made,
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we can explore the whole idea mathematically, using
essentially the formulation developed in reference 8. It
is gratifying that the various field-theoretical techniques
can be fully utilized. Section 3 will be devoted to intro-
duction of the Hartree-Fock equation for nucleon self-
energy, which will make the starting point of the theory.
Then we go on to discuss in Sec. 4 the collective modes.
In addition to the expected pseudoscalar "pion" states,
we find other massive mesons of scalar and vector
variety, as well as a scalar "deuteron. " The coupling
constants of these mesons can be easily determined. The
relation of the pion to the y5 gauge group will be dis-
cussed in Secs. 5 and 6.

The theory promises many practical consequences.
For this purpose, however, it is necessary to make our
model more realistic by incorporating the isospin, and
allowing for a violation of ys invariance. But in doing
so, there arise at the same time new problems concerning
the mass splitting and instability. This refined model
will be elaborated in Part II of this work, where we shall
also find predictions about strong and weak interactions.
Thus the general structure of the weak interaction cur-
rents modified by strong interactions can be treated to
some degree, enabling one to derive the decay processes
of various particles under simple assumptions. The
calculation of the pion decay rate gives perhaps one of
the most interesting supports of the theory. Results
about strong interactions themselves are equally inter-
esting. We shall find specific predictions about heavier
mesons, which are in line with the recent theoretical
expectations.

II. THE PRIMARY INTERACTION

We brieQy discuss the possible nature of the primary
interaction between fermions. Lacking any radically
new concepts, the interaction could be either mediated
by some fundamental Bose field or due to an inherent
nonlinearity in the fermion field. According to our
postulate, these interactions must allow chirality con-
servation in addition to the conservation of nucleon
number. The chirality X here is defined as the eigen-
value of y5, or in terms of quantized fields,

Furthermore, the dynamics of our theory would re-
quire that the interaction be attractive between particle
and antiparticle in order to make bound-state formation
possible. Under the transformation (2.3), various tensors
transform as follows:

Vector:

Axial vector:

Scalar:

Pseudoscalar:

Tensor:

sPyuP ~ iPyuf,

s4'Vu'Y&4' ~ s4"YuTsf'

Pit —+ ~ cos2cr+ifygk sin2n,

igygk —+ sPygk cos2n $P—sin2n,

Pa u,P -+ Po u,P cos2n+i Pysrru, f sin2cr.

(2.5)

It is obvious that a vector or pseudovector Bose field
coupled to the fermion field satisfies the invariance. The
vector case would also satisfy the dynamical require-
ment since, as in the electromagnetic interaction, the
forces would be attractive between opposite nucleon
charges. The pseudovector field, on the other hand, does
not meet the requirement as can be seen by studying the
self-consistent mass equation discussed later.

The vector field looks particularly attractive since it
can be associated with the nucleon number gauge group.
This idea has been explored by Lee and Yang, ' and
recently by Sakurai. " But since we are dealing with
strong interactions, such a field would have to have a
finite observed mass in a realistic theory. Whether this
is compatible with the invariance requirement is not yet
clear. (Besides, if the bare mass of both spinor and
vector field were zero, the theory would not contain any
parameter with the dimensions of mass. )

The nonlinear fermion interaction seems to offer
another possibility. Heisenberg and his co-workers"
have been developing a comprehensive theory of ele-
mentary particles along this line. It is not easy, however,
to gain a clear physical insight into their results obtained
by means of highly complicated mathematical ma-
chinery.

We would like to choose the nonlinear interaction in
this paper. Although this looks similar to Heisenberg' s
theory, the dynamical treatment will be quite different
and more amenable to qualitative understanding.

The following Lagrangian density will be assumed
(A=c= 1):

X= fy4ysgd'x (2.1) I-= A,~A+gsl (A8—' (6s4)'7. —(2.6)

The nucleon number is, on the other hand

E= ~$74fd'x. (2.2)

The coupling parameter go is positive, and has dimen-
sions Lmass7 '. The» invariance property of the
interaction is evident from Eq. (2.5). According to the
Fierz theorem, it is also equivalent to

—stol:(WvA)' —(4vuv4)'7 (2 7)

f ~ expLin»7$, g ~ it exp Linys7,

f~ exp/in7$, P ~ $ expl —su7,

where n is an arbitrary constant phase.

(2.3)

(2.4)

These are, respectively, generators of the p&- and ordi-
nary-gauge groups

This particular choice of ys-invariant form was taken
without a compelling reason, but has the advantage

T. D, Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).
'0 J. J. Samurai, Ann. Phys. 11, 1 (1960).
"W.Heisenberg, Z. Naturforsch. 14, 441 (1959).Earlier papers

are quoted there.
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that it can be naturally extended to incorporate isotopic
spin. "

Unlike Heisenberg's case, we do not have any theory
about the handling of the highly divergent singularities
inherent in nonlinear interactions. So we will introduce,
as an additional and independent assumption, an ad hoc
relativistic cutoG or form factor in actual calculations.
Thus the theory may also be regarded as an approxi-
mate treatment of the intermediate-boson model with a
large eGective mass.

As will be seen in subsequent sections, the nonlinear
model makes mathematics particularly easy, at least in
the lowest approximation, enabling one to derive many
interesting quantitative results.

IIL THE SELF-CONSISTENT EQUATION
FOR NUCLEON MASS

We will assume that all quantities we calculate here
are somewhow convergent, without asking the reason
behind it. This will be done actually by introducing a
suitable phenomenological cutoff.

Without specifying the interaction, let Z be the
unrenormalized proper self-energy part of the fermion,
expressed in terms of observed mass m, coupling con-
stant g, and cutoff A. A real Dirac particle will satisfy
the equation

energy Lagrangian J„and split J thus

L= (Ls+L,)+ (L, L,)—
=Le'+L .

For L, we assume quite general form (quadratic or
bilinear in the fields) such that Ls' leads to linear field
equations. This will enable one to defi~e a vacuum and a
complete set of "quasi-particle" states, each particle
being an eigenmode of Lo'. Now we treat J as per-
turbation, and determine J, from the requirement that
J shall not yield additional self-energy effects. This
procedure then leads to Eq. (3.2). The self-consistent
nature of such a procedure is evident since the self-
energy is calculated by perturbation theory with fields
which are already subject to the self-energy eGect.

In order to apply the method to our problem, let us
assume that L,= —mite, and introduce the propagator
Ss' &(x) for the corresponding Dirac particle with mass
m. In the lowest order, and using the two alternative
forms Eqs. (2.6) and (2.7), we get for Eq. (3.2)

Z= 2gpI TrSs"& i(0)—ys TrSs't '(0)ys
—lv. »7P '"'(0)+lv.v»v. v S '"'(0)3 (34)

in coordinate space.
This is quadratically divergent, but with a cutoff can

be made finite. In momentum space we have

zy p+mp+Z(p m gA)=0

for iy p+m=0 Namel. y

(3 1)
8gpi p m

d4p F (p,A),
(2zr)4 & p'+m' ie— (3.5)

m —mp ——Z(p, m, g,A) I,, ~ =p. where F(p,A) is a cutoif factor. In this case the self-

energy operator is a constant. Substituting 2 from Eq.The g will also be related to the bare coupling gs by an
(3 5) E (3 2) ( 0)'

equation of the type

g/gp ——I'(m, g,A). (3.3)

Equations (3.1) and (3.2) may be solved by successive
approximation starting from mo and go. It is possible,
however, that there are also solutions which cannot thus
be obtained. In fact, there can be a solution m/0 even
in the case where ma=0, and moreover the symmetry
seems to forbid a Gnite m.

This kind of situation can be most easily examined by
means of the generalized Hartree-Pock procedure'"
which was developed before in connection with the
theory of superconductivity. The basic idea is not new
in field theory, and in fact in its simplest form the
method is identical with the renormalization procedure
of Dyson, considered only in a somewhat different
context.

Suppose a Lagrangian is composed of the free and
interaction part: L=Ls+L;. Instead of diagonalizing Ls
and treating L; as perturbation, we introduce the self-

g pmz t d4p
m= — ~ F(p,A).

2zr4 J ps+ms —ze

This has two solutions: either m=0, or

(3.6)

gsi t- d'p
1 = — F (p,A).

2x-4 ~ P'+ms ie—(3 7)

(m' q
-'*m' (A.' q

—: A.

=I —+I
I

—I.
I

—+I I+— (3»
gsAz (As ) A' (ms ] m

If we use Eq. (3.5) with an invariant cutoff at ps=As
after the change of path: ps —+ zp, , we get

The first trivial one corresponds to the ordinary per-
turbative result. The second, nontrivial solution will
determine m in terms of go and A.

If we evaluate Eq. (3.7) with a straight noninvariant
cutoff at

I pI =A, we get

"This will be done in Part II.
's N. N. Bogoliubov, Uspekhi Fis. Nauk 67, 549 (1959) /trans-

lation: Soviet Phys. -Uspekhi 67, 256 (1959)].

m' (A'
=1—in( —+1 I.

g A' A.' &m'
(3.9)
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Since the right-hand side of Eq. (3.8) or (3.9) is positive
and ~&1 for real A/m, the nontrivial solution exists only
if

0 &2~'/g~'&1. (3.10)

(y„c&„+m)P& &(x)=0,

&P'"&(x) =&P& &(x) for ms=0.

(3.11a)

(3.11b)

(3.11c)

According to the standard procedure, we decompose
the f's into Fourier components:

Equation (3.9) is plotted in Fig. 1 as a function of
ms/iI&. '. As gal&&.

s increases over the critical value 2s', m
starts rising from 0. The nonanalytic nature of the solu-
tion is evident as ns cannot be expanded in powers of go.

ln the following we will assume that Eq. (3.10) is
satisfied, so that the nontrivial solution exists. As we
shall see later, physically this means that the nucleon-
antinucleon interaction must be attractive (gI&) 0) and
strong enough to cause a bound pair of zero total mass.
In the SCS theory, the nontrivial solution corresponds
to a superconductive state, whereas the trivial one
corresponds to a normal state, which is not the true
ground state of the superconductor. We may expect a
similar situation to hold in the present case.

In this connection, it must be kept in mind that our
solutions are only approximate ones. We are operating
under the assumption that the corrections to them are
not catastrophic, and can be appropriately calculated
when necessary. If this does not turn out to be so for
some solution, such a solution must be discarded. Later
we shall indeed find this possibility for the trivial solu-
tion, but for the moment we will ignore such con-
siderations.

Let us define then the vacuum corresponding to the
two solutions. Let &P"& and &P& & be quantized fields
satisfying the equations

2r'
goAs

Fio. 1. Plot oi the self-consistent mass equation (3.9).

'"'(p, )=[l(1+8.)7' "'(p, )
+L-:(1—&.)7'b""(—p, s)

b'"'(»s) = [-'(1+&.)7'b"'(P s)
-[-:(1-~,)7: l'&'(-p, ),

&.= I p I/(p'+m'):.

(3.15)

The vacuum Q&'& or Q' ' with respect to the field &P"& or
P~m& is now defined as

a&'& (p,s)Q&" = b&'& (pp) Qi" =0,

a( &(p,s)Q& &=b& &(p,s)Qi &=0.

(3.16)

(3.16')

Both &P&'&, &P&'& and &P' ', &P' ' applied to Q"& always create
particles of mass zero, whereas the same applied to 0( )

create particles of mass m.
From Eqs. (3.15) and (3.16) we obtain

The operator sets (a''& b&"&) and (a' & b' &) are related by
a canonical transformation because of Eq. (3.11c):

~i'"'(p s) = 2 [I-'"'*(p s)&.'" (p,s') &"'(p s')
n, S'

+si-'"'*(p s)t'-""(—p, s') b'"'(—p, s') 7
(3.14)

b'-'(p, s) = 2 [o.'-'*(p, s)~.'" (p,s')b"'(p, s')
a, S'

+e-'"'*(p s)&-"'*(—p s') ii""(—p s') 7.

Using Eq. (1.3), this is evaluated to give

4-"&(*)=-
p, s

Po = (P'+~')~

[~-'"'(p,s)~"'(p,s)e'"'
Q'-& =II{I!(1+~.)7-:

P, S

+e *' (p,s)b ' (p,s)e-' '7

1
4-""(~)=—,

p, s
po =(@2+F2)&

[I-'"&*(p s)~"&"(p,s)

&&e '"'+t& &'&(p, s)b~'~(p, s)e'" '7,

i=0 or m,

—[l(1—P.)7'~""(p,s)b""(—p, s) )Q"' (3 17)

(3 12) Thus Q~~& is, in terms of zero-mass particles, a superposi-
tion of pair states. Each pair has zero momentum, spin
and nucleon number, and carries &2 units of chirality,
since chirality equals minus the helicity s for massless
particles.

Let us calculate the scalar product (Q&'&,Q' ') from
Eq. (3.15):

where si i'~(p, s), t& "&(p,s) are the normalized spinor
eigenfunctions for particles and antiparticles, with mo-
mentum p and helicity s=&1, and

(Q& & Q~ "&)=II [-,'(1+P„)7-:

P, S

=exp{+ —,
' in[-', (1+P„)7). (3.18)

P, S

{~"'(p,s),~""(p',s') )
= {b&'&(y, s),b& "t(y', s') ) =b» b„, etc. (3.13) For large p, p„1—m'/2P', so that the exponent
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diverges as Vzm' J'dp/(2tr)0 (V= normalization volume). The Dirac equation (3.11b), at the same time, is trans-
Hence formed into

(0(0) 0(m)) (3.19)
)y&(7&+t)0 cos2n+sm70 sin2njp= 0. (3.26)

It is easy to see that any two states +(" and 4' ', ob-
tained by applying a finite number of creation operators
on 0(0) and 0' ' respectively, are also orthogonal.

Thus the two "worlds" based on 0(') and 0( ) are
physically distinct and outside of each other. Xo
interaction or measurement, in the usual sense, can
bridge them in finite steps.

What is the energy difference of the two vacua? Since
both are I.orentz invariant states, the difference can
only be either zero or infinity. Using the expression

Q(m) P (p +0m)0-;f (am)t (p $)a(m) (p S)
P, 8

—&'"'(y,s)&'""(p,s)},
(3.20)

~(o) P ~ y~ {a(0)t(p,s)a(0)(p, s)

—&")(p, s)&("t(p,s) },
we get for the respective energies

&'"'—&"'=—2 Z0 L(p'+~')' —lpl j (3»)
which is negative and quadratically divergent. So 0( '

may be called the "true" ground state, as was expected.
There remains finally the question of p& invariance.

The original Hamiltonian allowed two conservations X
and E, Eqs. (2.1) and (2.2). Both 0(" and 0' ' belong
to iV =0, and their elementary excitations carry cV =~1.
In the case of X, the same is true for the space 0"', but
0( ' as well as its elementary excitations are not
eigenstates of X, as is clear from the foregoing results. If
the latter solution is to be a possibility, there must be
an infinite degeneracy' with respect to the quantum
number X. A ground state will be in general a linear
combination of degenerate states with diferent X=O,

o ~ ~

=exp( P lnL1+((,+"(~' "'—1)-', (1—P„)j}. (3.27)

For large
~ p~, the exponent goes like

V f' 8$

p (&+2((a' a) 1) ~ d3p-
(2tr)' +

The integral is again divergent, Hence

(0 ( ' 0 ( ') = (0™,expL t'(n' —Q)X50—™)
=0, n'~n(mod2tr),

and, of course
(3.28)

The moral of this is that the self-consistent self-energy 2
is determined only up to a p5 transformation. This can
be easily verified from Eq. (3.4), in which the second
term on the right-hand side is nonvanishing when a
propagator corresponding to Eq. (3.26) is used. Al-
though Eq. (3.26) seems to violate parity conservation,
it is only superficially so since 0 ( ' is now not an
eigenstate of parity. We could alternatively say that the
parity operator undergoes transformation together with
the mass operator. Despite the odd form of the equation
(3.26), there is no change in the physical predictions of
the theory. We shall see more of this later.

I,et us calculate, as before, the scalar product of
0 (m) and 0 'm). From Eqs. (3.17) and (3.25) we get

(0 (m) 0,(m))

(3.28')(0("0 ™)=O.
(3.22)0{m) Q C 0 (m)

We can evaluate (0 ' ',0 ( )) alternatively from Eqs.
(3.22) and (3.24). Then

~

C0„~'e'"'(~ ~') =0, n4u'(mod2tr), (3.29)
m=—ooa"'(p, &1)—& e+4 a")(p, &1),

$(0) (p ~1)~ 0+(af)(0) (p ~1)
a(0)t(p ~1)~ e+iaa(0)t(p ~1)
$(0)t(y ~1)~ (+4~/(0)t(p ~])

(3 23) implying that

IC01 = IC+0I = I441=."=C. (330)

Equation (3.17) is in fact a particular case of this. The
p0-gauge transformation Eq. (2.3) induces the change

and the coefTicients of Eq. (3.22) become
Thus there is an infinity of equivalent worlds described
by0„( ', 0&~a(2tr. The states0& of Eq. (3.22) are then

(3 24) expressed in terms of 0 ( ' as

In particular

g(m) ~ g (m)

2

(m)
&

'ng ( )d
2x' "0

(3.31)

=expL —z X)0(-)
= II (L2 (1+Pe)3*'—L2 (1—Pu) j*' which form another orthogonal set. Since the original

total H commutes with X, it will have no matrix
Xe+04 a(0)t(p, ~)b(')t( p, ~)}0(0). (3.25) —elements connecting different "worlds. " Moreover, as
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was the case wit;h 0& ' and 0"', no finite measurement
can induce similar transitions. This is a kind of super-
selection rule, which effectively avoids the apparent
degeneracy to show up as physical effects. '4 The usual
description of the world by means of 0' ) and ordinary
Dirac particles must be regarded as only the most
convenient one.

We still are left with some paradoxes. The X con-
servation implies the existence of a conserved X
current:

j~5=i g'y, .y~P (3.32)

(3.32')

&.(p', p) =Fi(q')iv. »+F2(q') vsq. ,

q=p p~ p =p
(3.35)

The continuity equation (3.32'), together with Eq.
(3.33), further reduces this to

Fi=Fgq'/2m=—F,

2m'ygqq )x.(p' p)=F(q')I v.v +
(3.36)

The real nucleon is not a point particle. Its X-current
(3.36) is provided with the dramatic "anomalous"
term.

To understand the physical meaning of the anomalous

term, we have to make use of the dispersion relations.
The form factors F& and F2 will, in general, satisfy
dispersion relations of the form

q' t ImF;( —~')
F,(q') =F,(0)—— —d~', (3.37)

(q2+~2 j E)K2

assuming one subtraction. Each singularity at l~.
" corre-

sponds to some physical intermediate state. Thus if
F(0)WO, Eq. (3.36) indicates that there is a pole at
q'=0 for Fz (and no subtraction), which means in turn
that there is an isolated intermediate state of zero mass.

"This was discussed by R. Haag, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Medd. 29, No. 12 (1955).See also I.. van Hove,
Physica 18, 145 (1952).

which can readily be verified from Eq. (2.6). On the
other hand, for a massive Dirac particle the continuity
equation is not satisfied:

g(m)~ y P(mi 2myimi~ P(m) (3 33)

If a massive Dirac particle has to be a real eigenstate of
the system, how can this be reconciled? The answer
would be that the X-current operator taken between
real one-nucleon states should not be given simply by
iy„y5 because of the "radiative corrections. "We expect
instead

(p'l J. Ip)= (p')X, (p', p) (p), (3.34)

where the renormalized quantity X» should be, from
relativistic invariance grounds, of the form

+ 0 ~ ~

FIG. 2. Graphs corresponding to the Bethe-Salpeter equation in
"ladder" approximation. The thick line is a bound state.

To see its nature, we take a time-like q in its own rest
frame and go to the limit q' ~ 0. The anomalous term
has then only the time component, and is proportional
to the amplitude for creation of a nucleon pair in a J=O
state. Hence the zero mass state must have the same

property as this pair. It belongs to nucleon number zero,
so that we may call it a zero-mass pseudoscalar meson.
In order for a yq invariant -IIamiitonian such as Eq. (Z.6)
to allover massive ~zlcleoe states and a noevaeishieg X
current for q=o, it is therefore necessary to have at the

same time pseudoscalar zero mass mes-ons coupled with the

nlcleoms. Since we did not have such mesons in the
theory, they must be regarded as secondary products,
i.e., bound states of nucleon pairs. This conclusion
would not hold if in Eq. (3.36) F(q') =O(q') near q'=0.
A nucleon then would have always X=O. Such a
possibility cannot be excluded. We will show, however,
that the pseudoscalar zero-mass bound states do follow

explicitly, once we assume the nontrivial solution of the
self-energy equation.

IV. THE COLLECTIVE STATES

From the general discussion of Secs. 2 and 3, we may
expect the existence of collective states of the funda-
mental field which would manifest themselves as stable
or unstable particles. In particular we have argued that,
as a consequence of the y5 invariance, a pseudoscalar
zero-mass state must exist. We want now to discuss the
problem in detail, trying to determine the mass spec-
trum of the collective excitations (at least its general
features) and the strength of their coupling with the
nucleons. These states must be considered as a direct
effect of the same primary interaction which produces
the mass of the nucleon, which itself is a collective effect.
We will study the bound-state problem through the use
of the Bethe-Salpeter equation, taking into account ex-
plicitly the self-consistency conditions. We first verify
in the following the existence of the zero-mass pseudo-
scalar state.

The Bethe-Salpeter equation for a bound pair 8 deals
with the amplitude

c(~,y) =(0I T(it (~)f(y)) I
&).

As is well known, the equation is relatively easy to
handle in the ladder approximation. In our case we have
a four-spinor point interaction and the analog of the
"ladder" approximation would be the iteration of the
simplest closed loop (see Fig. 2) in which all lines repre-
sent dressed particles. We introduce the vertex function
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I" related to 4 by

+(P) =~ '""'(P+'f)I'-(P+ 'q P-'f—)&-' ' '(P .'q—) --(4 2

All we have to do then is to set up the integral equation
generated by the chain of diagrams, looking for solutions
having the symmetry properties of a pseudoscalar state.
This means that our solutions must be proportional to
p5. This requirement makes only the pseudoscalar and
axial vector part of the interaction contribute to the
integral equation. We have

I"(p+lq, P—lq)

2Zgp

v5 "TrLv5~~' '(P'+2q)
(2~)4

XI'(P'+-'q P' ~q)&~™(P' 2q)]~'P—'

Zgp

VSV, »hsV. ~' '(p'+kq)
(2~)4

Xr(p'+ -', q, p' ,'q)S ~-&—(p—' ,'q)]d'p'—. —(4.3)

For the moment let us ignore the pseudovector term on
the right-hand side. It then follows that the equation
has a constant solution I'=Cy5 if q'=0. To see this, first
observe that for the special case q= 0, Eq. (4.3) reduces
to

81gp
t

d p

(27r)4 " p'+m' f,e—
which is nothing but the self-consistency condition
(3.7), provided that the same cutoff is applied. Since the
pseudoscalar term of Eq. (4.3) gives a function of q'

only, the same condition remains true as long as q'=0.
When the pseudovector term is included, we have still

the same eigenvalue g'=0 with a solution of the form
I'=C&5+iD&5& q, which is not difficult to verify (see
Appendix).

We now add some remarks. First, the bound state
amplitude for this solution spreads in space over a region
of the order of the fermion Compton wavelength 1/nz
because of Eq. (4.2), making the zero-mass particle only
partially localizable. We want also to stress the role
played by the p5 invariance in the argument. We had in
fact already inferred the existence of the pseudoscalar
particle from relativistic and y5 invariance alone, and at
6rst sight the same result seems to follow now essen-
tially from the self-consistency equation. However, we
must notice that only the scalar term of the Lagrangian
appears in this equation while only the pseudoscalar
part contributes in the Bethe-Salpeter equation. It is
because of the y5-invariant Lagrangian that the Bethe-
Salpeter equation can be reduced to the self-consistency
condition.

Along the same line we could try to see whether other
bound states exist in the "ladder" approximation. How-
ever, besides calculating the spectrum, it is also im-

portant to determine the interaction properties of these
collective states with the fermions. For this purpose the
study of the two-"nucleon" scattering amplitude ap-
pears much more suitable, as we shall realize after the
following remark. Once we have recognized that in the
ladder approximation the collective states would appear
as real stabje particles, we must expect to the same
degree of approximation poles in the scattering matrix
of two nucleons corresponding to the possibility of the
virtual exchange of these particles. For definiteness we
shall refer again as an example to the pseudoscalar zero-
mass particle. Let us indicate by J„(q) the analytical
expression corresponding to the graph whose iteration
produces the bound state LFig. 3 (a)j.We construct next
the scattering matrix generated by the exchange of all

possible simple chains built with this element. This
means that we consider the set of diagrams in Fig. 3(b).
The series is easily evaluated and we obtain

2gpZ+5 Z+5)
1—J.(q)

(4.5)

Jp(q) =—2Zgp

(2~)4

4 (m'+ p') —q'
X d'P (4 6)" L(p+-'q)'+~'jL(p —'q)'+~'3

It is however more convenient to rewrite J~ in the form
of a dispersive integral, and if we forget for a moment
that it is a divergent expression, a simple manipulation
gives

go t.
' K'(1 —4m'(~') l

Ji (q) = d~'.
~ 4m'

(4.6')
q +K

2 j/5

(a)

+ t ~ ~

(b)

Fn. 3. The bubble graph for Jz and the scattering matrix
generated by it.

where the y~'s refer to the pairs (1,1') and (2,2'), re-
spectively. The meaning of this result is clear: because
of the self-consistent equation J„(0)=1,Eq. (4.5) is
equivalent to a phenomenological exchange term where
the intermediate particle is our pseudoscalar massless
boson (Fig. 4). The coupling constant G can now be
evaluated by straightforward comparison. Before doing
this calculation we need the explicit expression oi' Jr (q).
Using the ordinary rules for diagrams, we have
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In order for this expression to be meaningful, a new
cutoff A must be introduced. There is no simple relation
between this and the previous cutoffs. The dispersive
form is more comfortable to handle and accordingly we
shall reformulate the self-consistent condition 1 p(0) = 1,
or

h.2
gp1=-

42r2 "4 ~

(1—42i2'/Ii') ~dl~' (4 7)

gp f (1—42i2 /K ) '
q2) =1—q2 —dK ) (4.8)

which leads immediately to the result

It may be of interest to remark at this point that Eq.
(4.7) can be obtained also if we think of our theory as a
theory with intermediate pseudoscalar boson in the
limit of infinite boson mass. We are now in a position to
evaluate the phenomenological coupling constant G.
From Eqs. (4.6') and (4.7) we have

FIG. 4. The equiva-
lent phenomenological one-
meson exchange graph.

G 2 !24 (1 42i22/~2)
—,'——i

= 27r
& 4,„2 (~'—4222')

(4.12)

Let us next turn to the vector state generated by
iteration of the vector interaction. In this case we obtain
for each "bubble" a tensor

correlated exchange of pairs in the scattering process. "
The "nucleon-nucleon" forces induced by the exchange
of the scalar particle are, of course, of rather short range.
The general physical implications of these results will be
discussed more thoroughly later.

The phenomenological coupling constant Gq for the
scalar meson is given by

G 2
~

2i2 (1 42222/~2)
-',

=2' dK (4.9)
~vpv (~I2v qpqv/q )+Vv

This equation is interesting since it establishes a con-
nection between the phenomenological constant G~
and the cutoff independently of the value of the funda-
mental coupling gp. This fact exhibits the purely dy-
namical origin of the phenomenological coupling G~.
Actually go is buried in the value of the mass m.

So far we have exploited only the y5 vertex. What
happens then if the scalar part is iterated to form chains
of bubbles similar to those we have already discussed?
The procedure just explained can be followed again, and
a quantity J's(q) can be defined similarly with the result

(4.13)

2222'y

X
~

1+
I (1—4'/")-:.

Perhaps a remark is in order here regarding the evalua-
tion of Jz. It suffers from an ambiguity of subtraction
well known in connection with the photon self-energy
problem. The above result is of the conventional gauge
invariant form, which we take to be the proper choice.

Equation (4.13) leads to the scattering matrix

q2+ 2:2

gp t
4' (g2 —4m2) (1—42222/K2) 2

&s(q) = dI~2 (4.10)
4m' ~4

gp Vp 7p 7'g )
1—Jv (1—Jv) q'

(4.14)

It is immediately seen that because of Eq. (4.7)

Js(—4m2) =1, (4.11)

where the second term is, of course, effectively zero. It
can be easily seen that the denominator can produce a
pole below 4m2 for sufficiently small A2. In fact, from Eqs.
(4.7) and (4.13), we find

which causes a new pole to appear in the 5 matrix for
q2= —4m2. This means that we have another collective
state of mass 2m, parity + and spin 0!We observe that
it is necessary to assume the same cutoff as in the
pseudoscalar case in order that this result may be
obtained. The choice of the same cutoff in both cases
seems to be suggested by the p5 invariance as will be
seen later. We also notice the peculiar symmetry ex-
isting between the pseudoscalar and the scalar state: the
first has zero mass and binding energy 2m, while the
opposite is true for the scalar particle. So in the bound-
state picture the scalar particle would not be a true
bound state and should be, rather, interpreted as a

(8/3)m2(p, v2.

The coupling constant is given by

(4.15)

2 ~2+22222 "—I
= 32r t d~2 (1—42i22/li2)

'*. (4.16)
J4 2 (K2 p 2)2

It must be noted that the mass of the vector meson now
depends on the cutoff, unlike the previous two cases.

Finally we are left with the pseudovector state. We

'5 Of course this and other heavy mesons will in general become
unstable in higher order approximation, which is beyond the scope
of the presen. t paper.
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find for the bubble" TA.aLE I. Mass spectrum.

J~,.= —Jv, .+A'~...
g ~2 ~42 d~2

(1—4m'/a') '.
"4~' q +s

(4.17)

In view of the self-consistency condition (4.7), it can be
seen that this does not produce a pole of the scattering
matrix for —q'(4m', corresponding to a pseudovector
meson.

So far we have considered only iterations of the same
kind of interactions. In the ladder approximation there
is actually a coupling between pseudoscalar and pseudo-
vector interactions as was explicitly considered in Eq.
(4.3). However, the coupling between scalar and vector
interactions vanish because of the Furry's theorem.

This coupling of pseudoscalar and pseudovector inter-
actions does not change the pion pole of the scattering
matrix, but it affects the coupling of the pion to the
nucleon since a chain of the pseudoscalar can join the
external nucleon with an axial vector interaction. In
other words, the pion-nucleon coupling is in general a
mixture of pseudoscalar and derivative pseudovector
types (Appendix).

We would like to inject here a remark concerning the
trivial solution of the self-energy equation, against
which we had no decisive argument. So let us also try to
apply our scattering formula to this solution. For the
pseudoscalar state we now find Ji (q=p))1, provided
that the cutoff A is kept Axed and m is set equal to zero
in Eq. (4.6'). (The pseudovector interference vanishes. )
In other words, there will be a pole for some q') 0 (p'(0).
This is again a supporting evidence that the trivial
solution could be unstable, capable of decaying by
emitting such mesons. The Anal answer, however, de-
pends on the exact nature of the cutoR.

Finally we would like to discuss the nucleon-nucleon
scattering in the same spirit and approximation as for
the nucleon-antinucleon scattering. In order to make a
correspondence with the previous cases, it is convenient
to rewrite the Hamiltonian in the following way'.

&i= gsL404'9' Ivy—4"vs'"7—
.aoLkvA 0 vA —4'v.vs'' 4' v.vs47

saoLkv. &4'0~ 'v—A 0v.vs~A& 'v.v—s4'7 (4 13)

where f', f' are the charge-conjugate fields.
The last form of Eq. (4.18) is suitable for our purpose.

We note first that the vector part of the interaction is
identically zero because of the anticommutativity of P.
Thus only the pseudovector part survives. A "bubble"
made of this interaction then is seen to give rise to the
same integral J&, Eq. (4.17). Since the interfering
pseudoscalar interaction is missing in the present case,

16 We meet here again the problem of subtraction. Our choice
follows naturally from comparison with the vector case, and is
consistent with Ect. (3.33).

Nucleon
number Mass p

Spin- Spectroscopic
parity notation

0
0
0

&2

0
2m

(8/3) m'(p'
2m2 &p,2

0
0+
1
0+

leap
3Pp

3+1
1/0

=VpV5C C 'V~V5
1—JA

Jv/q'
+v qvs(- C 'v qv5,

(1—J~') (1—Jg)
JA= JA -JV.

(4.19)

The first term, corresponding to a scattering in the
J=1 state, does not have a pole. The second term can
have one below 4rrP for 1=J~'. With Eqs. (4.7) and
(4.17), this determines the mass pn .'

2~2 (IJ,D2 (4.20)

In this second term of the scattering matrix, the wave
function is proportional to Cy qy5, so that the bound
state behaves like a scalar "deuteron" (a singlet 5
state). The residue of the pole determines the nucleon-
"deuteron" coupling constant (derivative) Go', which
is positive as it should be.

Table I summarizes the main results of this section.
Although our approximation is a very crude one, we
believe that it reQects the real situation at least quali-
tatively, because all the results are understandable in
simple physical terms. Thus in the nonrelativistic sense,
our Hamiltonian contains spin-independent attractive
scalar and vector interactions plus a spin-dependent
axial vector interaction between a particle and an
antiparticle. Between particles, the vector part turns
into a repulsion. Table I is just what we expect for the
level ordering from this consideration.

V. PHENOMENOLOGICAL THEORY
AND y5 INVARIANCE

In the previous section special subsets of diagrams
were taken into account, and the existence of various
boson states was established, together with their cou-
plings with the nucleons. As was discussed there, we can
reasonably expect that these results are essentially cor-
rect in spite of the very simple approximations. Because
the bosons have in general small masses (compared to
the unbound nucleon states), they will play important.
roles in the dynamics of strong interactions at least at,
energies compa, rable t,o these masses,

we get the complete scattering matrix by iterating JA.

qIIqv/q ql qv/q—v.vsc + —,C 'vvs
1—JA-
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Thus if we are willing to accept the conclusions of our
lowest order approximation, what we should do then is
to study the dynamics of systems consisting of nucleons
and the diferent kinds of bosons which all together
represent the primary manifestation of the fundamental
interaction. These particles will be now assumed to
interact via their phenomenological couplings. So we

may describe our purpose as an attempt to construct a
theory. in the conventional sense in which a separate
field is introduced for each kind of particle. However,
this is not a simple and unambiguous problem because
our fundamental theory is completely +5 invariant and
we must make sure that this invariance is preserved at
any stage of our calculations in order that the results be
meaningful. For a better understanding of the problem,
let us consider our Lagrangian in the lowest self-

consistent approximation. We have

l

where

L'= Lp'+Lr',

Lo'= (O'V ~~—A'+mA)
I.,'= gpL(pp)p —(p~ pp)'j+ mph.

(5.1)

pp ~ yp cos2n+2 sln2n,

1 —+ cos2n+ jap sin2a,

Jp —+ Jp cos'2n+ Js sin'2n,

J s —+ Js cos'2n+ Jp sin'2n,

Jsp ~ (Jp—Js) sin2ncos2n,

Jp s ~ (Jp —Js) sln2n cos2n.

(5.3)

By simple substitution the invariance follows easily.
The argument can now be extended to all orders, pro-
vided at each order all the possible combinations of S
and I' are included. The invariance of the scattering in
the "ladder" approximation is thus established. It may
look surprising that the SP and I'S contributions do not
vanish identically. This can be understood by consider-
ing the fact that the y~ transformation changes the

I.' is obviously p5 invariant. In order to preserve this
invariance we must study the S matrix generated by
Lz'. Some subsets of diagrams have been considered in
the previous section and it will be shown now how
those calculations comply with y~ invariance. This point
must be understood clearly so that we shall discuss it in
a rather systematic way. Let us recall first how we
constructed the scattering matrix in the "ladder" ap-
proximation. The lowest-order contribution is certainly
invariant as no internal massive line appears. But what
will happen to the next-order terms [Fig. 3(b)j? To
these diagrams corresponds the expression

»(q') vpJp(q')vp+~—J»(q'h p+A pJps(q') (5 2)

In the gauge in which our calculations were performed,
the last two terms happened to be zero. We write down
next the transformation properties of the quantities
appearing above. By straightforward calculation we find

parity of the vacuum which will be in general a super-

position of states of opposite parities. In this way
products of fields of different parities (as the SI'
propagator) may have a nonvanishing average value in

the vacuum state.
We may now attempt the construction of the

phenomenological coupling by introducing two local
fields C~ and C q describing the pseudoscalar and the
scalar particles, respectively. We start by observing

that, in the same gauge in which the previous calcula-
tions were made, we can write the meson-nucleon
interaction as

Lr= GpigypilC p+GsffC's (5.4)

In order to find the general expression valid in any
gauge, it is convenient to introduce the following two-
dimensional notation

(iPypf) (C'p) (Gp 0 )
(5.5)

PP i KCsJ E 0 Gs)

The interaction Lagrangian Eq. (5.4) can be written in

this notation in a compact form,

I.r= qGC'. (5.6)

The effect of the y5 transformation on y is described
with the aid of the matrix

(cos2n —sin2n)

~ sin2n cos2n 0
' (5.7)

&0 &')
(5.10)

we write Eq. (5.9) in the invariant form

I,= ——,'a„ca„c——,'cu c. (5.11)

In this way we have given a formal prescription for
the y5 transformation in the phenomenological treat-
ment. We have to emphasize here that the Lagrangians
(5.9) and (5.11) are not yp invariant in the ordinary
sense of the word. In our theory, where the mesons are
only phenomenological substitutes which partially rep-
resent the dynamical contents of the theory, they may

which satisfies UU+= UU—'= UU~= 1. In other words,
the p5 transformation induces a unitary transformation
in the two-dimensional space, and Eq. (5.6) remains
invariant if

G~ UGU ', C —+ UC.
'

(5.8)

To complete the construction of the theory, the free
Lagrangian for the fields C p and C q must be added. If
we work again in the special gauge n=0, we may write

Lp= —pBp@pl9p@p pBp@ Ops@ s2ti 4s (5.9)

where p,'=4m'. We use again the two-dimensional
notation, and defining the mass operator
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be, however, called y5 covariant. In other words, the

masses aed the coupling constants are not axed parameters,
but rather dynamical quantities zehich are subject to

transformations whee the representation is changed It.will

be legitimate to ask whether this situation corresponds
to the one obtained in the framework of the fundamental
theory and discussed in the "ladder" approximation in
the previous section. We shall examine the transforma-
tion rule for the mass operator M', since this illustrates
the case in point. Let us calculate explicitly M' in an
arbitrary gauge o.. We have

M' —+ UM'U '

slIl 2o.

E —sin2o. cos20;

—s.n2n cos2n )
(5.12)

cos'2n )
The meaning of this equation is that the pseudoscalar
and the scalar particle will have generally different
masses in different gauges. In particular we see that the
pseudoscalar particle has in the gauge o. a mass sin2np, .
If this is the case we must expect that after the trans-
formation the pole in the corresponding propagator will
move from q'=0 to q'= —(sin'2n)p'. This actually may
be verified directly in the "ladder" approximation which
shows that the pion propagator changes according to

2go 2gp
imp'ApI = (5.13)

1—Jp 1—JI cos'2n —J~ sin'2o.

Using the results of the previous section, it is seen that
the denominator of the right-hand side vanishes for
g'= —(sin'2n)4m'. In this way we have seen how our
p5-invariant theory can be approximated by a phe-
nomenological description in terms of pseudoscalar and
scalar mesons. Qf course one may add the vector meson
as well. Such a description does not look y5 invariant. It
is only p5 covariant, and the masses and coupling
constants must be understood to be matrices which,
however, can be simultaneously diagonalized.

The reason for this situation is the degeneracy of the
vacuum and the world built upon it. Only after com-
bining all the equivalent but nonintersecting worlds
labeled with different n do we recover complete y5
invariance. Nevertheless, even in a particular world we
can find manifestations of the invariance, such as the
zero-mass pseudoscalar meson and the conserved y5
current.

VI. THE CONSERVATION OF AXIAL
VECTOR CURRENT

In this section we will discuss another paradoxical
aspect of the theory regarding the y5 invariance. In
Sec. 3 we argued that the X current should really be
conserved, and that this is possible if a nucleon X
current possesses a peculiar anomalous term. We now
verify the statement explicitly in our approximation.

First we have to realize that the problem is again how
to keep the p&-invariant nature of the theory at every

We readily realize that the coefficient of the second term
gives the desired X-current vertex correction.

On the other hand, the entire Lagrangian remains
invariant under a local y~ transformation if Eq. (2.3) is
accompanied by

(6.2)

where o, is now an arbitrary function. In other words,

e iay6y(B —Bcx)e

incog

g(B)

in a symbolical way of writing. '
Expanding (6.3) after putting 8=0, we get

(6.3)

' (P'-P)Lv ~(p)+~(P')~ j
='-(P' P)(p' P)~-:(P',P-),

ol
yg(P)+Z(P')y, = (P' P)„A„,(P',P)—. (6.4)

The entire vertex I"„~——iy„F5+A.„q then satis6es

7 I'(P)+L'(P')7 = (p' P) I'. (—P' P)—
6.5

I.'(P) = iv P &(P—)— —

which is the desired generalized Ward identity. "The
right-hand side of Eq. (6.5) is the divergence of the X
current, while the left-hand side vanishes when p and p'
are on the mass shell of the actual particle. The X-cur-
rent conservation is thus established. Moreover, the way
the anomalous term arises is now clear. I'or if we
assume Z(P)=m, Eq. (6.4) gives

2m'~= (P' P)P~P5(p' P)— —

so that we may write the longitudinal part of A as

A„g~'&(p', p) =2mysq„/g', q= p' —p,

(6.6)

(6.7)

which is of the desired form.
Next we have to determine what types of graphs

"We assume here that n(x) is different from zero only over a
finite space-time region, so that the gauge of the nontrivial
vacuum, which we may fix at remote past, is not affected by the
transformation. The limiting process of going over to constant o.
is then'ill-defined as we can see from the fact that the anomalous
term in F„6 has no limit as q

—+ 0.
See also J. Bernstein, M. Gell-Mann, and I,. Michel, Nuovo

cimento 16, 560 (1960).

stage of approximation. It is well known in quantum
electrodynamics that, in order to observe the ordinary
gauge invariance, a certain set of graphs have to be
combined together in a given approximation. The ne-
cessity for this is based on a general proof which makes
use of the so-called Ward identity. In our present case
there also exists an analog of the Ward identity. In
order to derive it, let us first consider the proper self-
energy part of our fermion in the presence of an external
axial vector field B„with the interaction I.B———j»B„.
The self-energy operator is now a matrix Z'e (P',P) de-
pending on initial and final momenta. Expanding Z io
powers of 8, we have

~'"(P',P) =~(p)+~. (P',P)~.(P' —P)+
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should be considered for I'„ in our particular approxima-
tion of the self-energy. Examining the way in which the
relation (6.3) is maintained in a perturbation expansion,
we are led to the conclusion that our self-energy repre-
sented by Fig. 5(a) gives rise to the series of vertex
graphs [Fig. 5(b)]. The summation of the graphs is

easily carried out to give

Ap, 5 1+5 J+gp
1—Jg

(6.8)

where Jz was obtained before [Eq. (4.8)], and

2'Ego
J»-— "Tr~,S(p+q/2)~„~5S(p q/2)d'—p

(2zr)4 ~

go p ck
zmq„~ (1—4m'/44') l.

2m' 4 ~ q'+14'
(6.9)

&,5= zy„y~++, 5

=zy„ys+2my'q„/q', (6.10)

in agreement with the general formula. We see also that
there is no form factor in this approximation.

This example will suffice to show the general pro-
cedure necessary for keeping &5 invariance. When we
consider further corrections, the procedure becomes
more involved, but we can always find a set of graphs
which are sufhcient to maintain the X-current con-
servation. We shall come across this problem in con-
nection with the axial vector weak interactions.

VII. SUMMARY AND DISCUSSION

We briefly summarize the results so far obtained. Our
model Hamiltonian, though very simple, has been found
to produce results which strongly simulate the general
characteristics of real nucleons and mesons. It is quite
appealing that both the nucleon mass and the pseudo-
scalar "pion" are of the same dynamical origin, and the
reason behind this can be easily understood in terms of
(1) classical concepts such as attraction or repulsion
between particles, and (2) the &5 symmetry.

According to our model, the pion is not the primary
agent of strong interactions, but only a secondary effect.
The primary interaction is unknown. At the present
stage of the model the latter is only required to have
appropriate dynamical and symmetry properties, al-
though the nonlinear four-fermion interaction, which we
actually adopted, has certain practical advantages.

FIG. 6. A class of higher order self-energy graphs.

G~~ t
&" d14z (

zm 32zr2 ~ * 14' 0 44' j (7.1)

where A' is an effective cutoff. Substituting G~' from
Eq. (4.9), this becomes

In our model the idealized "pion" occupies a special
position in connection with the y5-gauge transformation.
But there are also other massive bound states which

may be called heavy mesons and deuterons. The con-
ventional meson field theory must be regarded, from our
point of view, as only a phenomenological description of
events which are actually dynamic processes on a higher
level of understanding, in the same sense that the
phonon field is a phenomenological description of
interatomic dynamics.

Our theory contains two parameters, the primary
coupling constant and the cutoff, which can be trans-
lated into observed quantities: nucleon mass and the
pion-nucleon coupling constant. It is interesting that. the
pion coupling depends only on the cutoff in our ap-
proximation. In order to make the pion coupling as big
as the observed one (=15) the cutoff has to be rather
small, being of the same order as the nucleon mass.

We would like to make some remarks about the higher
order approximations. If the higher order corrections
are small, the usual perturbation calculation will be
sufFicient. If they are large compared to the lowest order
estimation, the self-consistent procedure must be set up,
including these effects from the beginning. This is
complicated by the fact that the pions and other
mesons have to be properly taken into account.

To get an idea about the importance of the correc-
tions, let us take the next order self-energy graph
(Fig. 6). This is only the 6rst term of a class of correc-
tions shown in Fig. 6, the sum of which we know already
to give rise to an important collective effect, i.e., the
mesons. It would be proper, therefore, to consider the
entire class put together. The correction is then equiva-
lent to the ordinary second order self-energy due to
mesons, plus modifications arising at high momenta.
Thus strict perturbation with respect to the bare
coupling go will not be an adequate procedure. Evalu-
ating, for example, the pion contribution in a phe-
nomenological way, we get

6zzz 1 p' "
d14' ( 4m') t-~' dl4' ( 4z4z') '*

zzz 4 "4 2 14' 5 ~' I ~4 2 I4' ( 14')

%'zG. 5. Graphs for self-energy and matching radiative corrections
to an axial vector vertex.

As A and A' should be of the same order of magnitude,
the higher order corrections are in general not negligible.
We may point out, on the other hand, that there is a
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tendency for partial cancellation between contributions
from diferent mesons or nucleon pairs.

We already remarked before that the model treated
here is not realistic enough to be compared with the
actual nucleon problem. Our purpose was to show that
a new possibility exists for 6eld theory to be richer and
more complex than has been hitherto envisaged, even
though the mathematics is marred by the unresolved
divergence problem.

In the subsequent paper we will attempt to generalize
the model to allow for isospin and finite pion mass, and
draw various consequences regarding strong as well as
weak interactions.

APPENDIX

We treat here, for completeness, the problem created
by the coupling of pseudoscalar and pseudovector terms
encountered in the text. As we have seen, such an effect
is not essential for the discussion of y~ invariance, but
rather adds to complication, which however naturally
appears in the ladder approximation.

First let us write down the integral equation for a
vertex part j. :

I'(p+ :q, p :q)-——

which lead to q'= 0, and C:D= 1—2m'I (0):mI (0).
From Eq. (4.8), we have 0(2m'I(0) (-.', .

(b) Put r„5——(iv„vs+2mv, q„/q')Fi(q')
+ (iv.v~ —iv qvnq. /q')F2(q') (A 3)

This is seen. to satisfy the integral equation if

F2= J~(q')/[I —»(q')),
»(q') = 2m'I(q') —J'v(q')

(A.4)

where J(q') was defined in Eq. (4.13).
On the mass shell, F„5 reduces to

(iv„vg+ 2mv Sq„/q') F(q'),

F(q') = 1+F2 (q') = 1/[1 —» (q')).

2go(P )f(v ) +go(P')f(iv v )

For q'=0, we have J(q') =0 so that 1&F(0)=1/
[1—2m'I(0)) &2.

(c) From the structure of the inhomogeneous term,
it is clear that the scattering matrix is given by

where I"5 is the pseudoscalar vertex function.
Again, from Eq. (A.1), I'6 is determined as

2zgp
=v(p+ ,q, p lq)+--v. Trl v.&(p'+:q)-

(2~)4

x(lp'+ 'qp 'q)&-i:(p k—)-)d'p'—

Sgo

v~v.)»[vip(p'+kq)
(2a-)4

I'& ——VS[1—2m'I(q'))/q'I(q') miV —qV5/q', (A.6)

which has an entirely different behavior from the bare
y5 for small q'. The scattering matrix is then

This embraces three special cases depending on the
inhomogeneous term y:

(a) v =0 for the Bethe-Salpeter equation for the pseudo-
scalar meson;

(b) v=iv„vs for the pseudovector vertex function I"„~,
(c) v= 2go(vg)f(v~); —go(v„v~)f(v„v~), for the nucleon-

antinucleon scattering through these interactions.

The first three terms have a pole at q'=0. The coupling
constants of the pseudoscalar meson are then

pseudoscalar coupling:

XI (p'+ ', q, p 2q)S, (p-', q—))d p'. (A—.1-) g (v,)f(v,) 2g,[I 2m2I(q2))/q2I(q2)

[(~v —qv5)f(vs) * (v~)f—(iv qv~) ~)2.mgo/q'
—(iv qv )f(iv qv~) go»(q')/q'[I —»(q'))

+ (iv„vs) f (iv„vs);go/[1 —» (q')]. (A.7)

Here i and f refer to initial and final states, and the
integral kernel of Eq. (A.1) operates on the f pa, rt.

We will consider them successively.
(a) We make the ansatz I'=Cv5+iDv~v q. The inte-

grals in Eq. (A.1) then reduce to the standard forms
considered in the text. Making use of Eqs. (4.9), (4.17),
a,nd (6.9), we get"

G '= 2go[1—2m'I(0))/I(0),

pseudovector coupling:

G„„'=g,»(0)/[1 —» (0)]
=go2m'I (0)/'[1 —2m'I (0)]. (A.8)

C=C—(C+2mD)q'I,

D= (C+2mD)mI,
(A.2)

Their relative sign is such that the equivalent pseudo-
scalar coupling on the mass shell is

go p
d~' Jf 4m') l

I(q')=--
4a.2 J q2+~2 ( ~2 )

G„"=4m'gp
1—2m'I(0): 2m'I(0)

(A.9)
2m'I (0) 1—2m'I(0)


